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Executive Summary 
This report summarizes the research activities, results of the user studies and research 
accomplishments out of the AMCLM project in the past year. At the start of the project, 
we carried out a literature review on video based physiological measures of cognitive 
load, focusing on unobtrusive eye-activity related methods, to understand the state-of-the-
art. In the mean time, we also investigated the validity of using speech formants and their 
fusion to measure cognitive load automatically. For the research on eye-activity based 
cognitive load measurement, we had examined various features, including blink latency, 
fixation time, saccade speed and pupil size. We further investigated the use of pupil size 
for automatic classification of cognitive load in different luminance conditions and under 
various emotional stimuli. All together, we had carried out 4 sets of user experiments to 
validate the research outcomes in a range of task scenarios, including Stroop test, 
computer-based basketball training, and mental arithmetic (summation) tasks.  
 
In terms of concrete research outcomes, the following report and papers were published: 
 

• Wang, Y., Literature Review on Video Based Physiological Measures of Cognitive 
Workload, NICTA Technical Report, August 2010. 

• Yap, T. F., Epps, J., Ambikairajah, E. and Choi, E., “An Investigation of Formant 
Frequencies for Cognitive Load Classification”, Proc. Annual Conference of the 
International Speech Communication Association (InterSpeech’10), Makuhari, 
Japan, September 2010, pp. 2022-2025. 

• Chen, S., Epps, J., Ruiz, N and Chen, F., “Eye Activity as a Measure of Human 
Mental Effort in HCI”, Proc. International Conference on Intelligent User 
Interfaces (IUI’11), Palo, Alto, U.S.A., February 2011, pp. 315-318. 

• Xu, J., Wang, Y., Chen, F., Choi, E., Li, G., Chen, S. and Hussain, S., “Pupillary 
Response Based Cognitive Workload Index under Luminance and Emotional 
Changes”, Proc. SIGCHI Conference on Human Factors in Computing Systems 
(CHI’11), Vancouver, Canada, May 2011, pp. 1627-1632. 

• Xu, J., Wang, Y., Chen, F. and Choi, E., “Pupillary Response Based Cognitive 
Workload Measurement under Luminance Changes”, Proc. IFIP International 
Conference on Human-Computer Interaction (INTERACT’11), Lisbon, Portugal, 
September 2011, to appear. 
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1 Introduction 
Cognitive load (CL) refers to the amount of mental demand imposed by a particular task 
on a person, and has been associated with the limited capacity of working memory. 
However, the same task demand can affect different people in different ways, and can 
induce levels of perceived cognitive load that vary from one person to another. The 
cognitive load experienced by a person in completing a task has a major impact on her/his 
ability to acquire information during the task, and can severely impact the human 
performance if the load exceeds the mental capacity. Cognitive load measurement (CLM) 
therefore plays an important role in various application areas involving human-computer 
interface, such as air traffic control, in-car safety and electronic games. By quantifying the 
mental efforts of a person when performing tasks, cognitive load measurement helps 
predict or enhance the performance of the person and the overall system.  
 
This project has focused on two main modalities, namely speech and eye activity, for 
automatic cognitive load measurement, due to the unobtrusive nature of these methods. 
While speech related CLM research is comparatively mature, eye activity as a 
physiological measure still requires much more research exploration.  
 
2 Literature Review - Video based CLM measures 
Physiological measures belong to one class of workload measurement techniques, which 
attempt to interpret the cognitive processes through their effect on the operator’s body 
state. In the past, physiological measures usually entailed invasive equipment. With the 
advance of sensing technologies in recent years, the measuring techniques have become 
less intrusive, especially those through remote sensing. As a physiological index, eye 
activity has been considered as an effective indicator of cognitive workload assessment, as 
it can be sensitive to changes of mental effort. Eye activity based physiological measures, 
such as fixation and saccade, eye blink, and pupillary response, can be detected 
unobtrusively through remote sensing.  
 
Thus a literature review on video based physiological measures including eye activity has 
been carried out to understand the research landscape and the review can be found in 
Appendix A. This review covers imaging sensors for workload studies, pupillary, eye-
blink, eye-movement and skin-temperature based workload measures. It also reviews 
various multimodal measures and their fusion methods. We note the increasing use of 
multimodal feature fusion and probabilistic modeling, and the need of user-specific 
modeling. 
 
3 Speech formant based CLM 
This study has allowed us to carry out a detailed analysis of the vowel-level effect of 
cognitive load on formants (vocal tract characteristics), together with classification results 
for different formant feature combinations. The corresponding paper can be found in 
Appendix B. 
 
3.1 Design and procedure 
The database used in this work is the Stroop test database, which consists of speech 
recorded from 16 randomly selected native English speakers (7 males and 9 females) 
while performing three tasks of varying cognitive load levels. In the low load task, 
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speakers were asked to read aloud words corresponding to color names. In the medium 
load task, a mismatch was introduced between the color names and their font colors, and 
the speakers were asked to name the font colors instead. The high load task was similar to 
the medium load task except that time constraints were added to the task. 
 
3.2 Analysis and results 
A subset of the Stroop test database, comprising 4 vowel sounds (/ae/, /eh/, /iy/ and /uw/) 
from all speakers, was extracted.  We studied how vowels change in the F1-F2 plane 
under different CL levels and examined the dependency of a formant frequency change on 
the type of vowels. Overall, we observed that F1 is increasing, while F2 is decreasing, as 
cognitive load is increased. Classification results performed on the Stroop test database 
show that formant features (F1, F2 & F3) not only have lower dimensionality, but 
dynamic formant features can outperform conventionally used MFCC-based features by a 
relative improvement of 12%. The classification results are shown in Table 1. 
 

Table 1. 3-class cognitive load classification using formant and MFCC features. 
 

 
 
4 Eye activity based CLM 
This study researches into 8 eye activity based features, spanning eye blink, pupillary 
response and eye movement information. Correlation analysis between various pairs of 
features suggests that significant improvements in discriminating different effort levels 
can be made by combining multiple features. A conference paper has been published for 
this study and it can be found in Appendix C. 
 
4.1 Design and procedure 
A computer-based training application, running on a tablet monitor, was designed for 
basketball players to learn playing strategies by observing team player positions in 
basketball game videos. The goal of this task was to detect and identify defenders and 
attackers during a video clip of an actual game, and recall their positions around the ball at 
the end of each 15-second clip. 
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Subjects were instructed to watch a game video clip and recall player positions by writing 
them down on a blank on-screen basketball court schematic using simple signs: crosses 
and circles. They completed 6 sub-tasks for each low, medium and high level of mental 
demand, with a few minutes break between each level. All participants completed 8 
sessions in different days, and here we consider one of those 7 sessions for data analysis. 
 
Task difficulty levels were varied by the number of player positions to be recalled. In the 
low cognitive load level, 3 player positions were required, while 6 positions were required 
by the medium level and all 10 positions in the high level. 
 
Twelve paid male recreational basketball players, each with more than two years’ 
experience, aged 19-36, completed this experiment. Eye activity was monitored using an 
ASL Eye-Trac 6 head mounted eye tracker system. Subjects were free to move their head 
but instructed to keep their eyes within the screen display range. 
 
4.2 Analysis and results 
Eight dependent variables were employed to measure the mental effort: blink latency 
(BL), blink rate (BR), mean pupil size (MPS) in the time between 2s preceding and after 
the game video ended, standard deviation of pupil size (SPS) in the 4-second period, 
fixation time (FT) , fixation rate (FR), saccade size (SSI) and saccade speed (SSP). Table 
2 shows the results of paired t-test conducted on these measures. 
 

Table 2. Paired t-test for eye activity based measures 

 BL BR MPS SPS FT FR SSI SSP 
t(5) 1.94 3.64 4.22 0.62 2.41 2.95 4.68 3.56 
Pvalue 0.109 0.014 0.008 0.557 0.060 0.031 0.005 0.016 

 
In regards to blink activity, both blink latency and blink rate display clear mental effort 
related variations. Pupil size was measured from 2 seconds before and 2 seconds after the 
clip, involving mostly recall in this period, during which sustained working memory is 
heavily involved. The average pupil size for the two difficulty levels shows a significant 
effect as opposed to the standard deviation of pupil size, which indicates that in some 
cases pupil size is larger in a more difficult task level but shows less fluctuation. 
Meanwhile, fixation duration and fixation rate results indicate that significantly more 
attention is needed when the task is more complex. In addition, saccade speed and 
especially saccade size appear to have been highly discriminatory parameters. 
 
5 Pupillary response based CLM 
Two studies were carried out to investigate how the relationship between pupil size and 
cognitive load may be affected by various factors unrelated to workload, including 
luminance condition and emotional arousal. The corresponding papers can be found in 
Appendices D and E respectively. 
 
5.1 Workload measurement under luminance changes 
 
5.1.1 Design and procedure 
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Each subject is requested to perform arithmetic tasks under different luminance 
conditions. The arithmetic tasks have 4 levels of difficulty, and each level of task 
difficulty is combined with 4 levels of background brightness, which results in 16 
different trial types in total. 
 
For each arithmetic task, each subject is asked to sum up 4 different numbers sequentially 
displayed on the center of the screen, and then choose the correct answer on the screen 
through mouse input. The task difficulty depends on the range of numbers. For the first 
(lowest) difficulty level, each number is binary (0 or 1); for the second difficulty level, 
each number has 1 digit (1 to 9); for the third difficulty level, each number has 2 digits (10 
to 99); for the fourth (highest) difficulty level, each number has 3 digits (100 to 999). Each 
number will be displayed for 3 seconds, and there is no time constraint for choosing the 
answer. Before the first number appears, different number of “X” will be displayed at the 
center of the screen for 3 seconds. The number of “X” corresponds to the number of digits 
for each arithmetic task. 
 
During the experiment, the luminance condition is varied when each subject performs 
arithmetic tasks. To produce different levels of luminance condition, luminance (grayscale 
value) of the background are set as 32, 96, 160 and 224 for the four levels of background 
brightness (L1, L2, L3, and L4), respectively. Black background will be displayed for 6 
seconds before each arithmetic task. 
 
The experiment starts with a practice trial of which the data is not analyzed. Subsequently 
a one-minute resting data with black background is recorded before the test trials start. 
There are two tasks for each trial type, which results in 32 arithmetic tasks for each subject 
in the experiment. The tasks are presented randomly during the experiment. Once the 
subject finishes all the tasks, another one-minute resting data is also recorded. The whole 
experiment lasts about 25 minutes for each subject. 
 
Thirteen 24-to-46-year-old male subjects have been invited to participate in the 
experiment. All the subjects have normal or corrected-to-normal vision. Each subject 
receives a small-value reward for his participation. 
 
5.1.2 Analysis and results 
For each subject, the pupillary response data of every arithmetic task during the 
experiment is examined. For a coarse-grained analysis, the average pupil diameter from 
the whole task period is used to characterize the cognitive workload. Together, 
background brightness and cognitive workload could affect the pupil diameter. It can be 
observed that the pupil diameter at the highest task difficulty with highest background 
brightness is, in fact, smaller than that at the lowest task difficulty with lowest background 
brightness. This observation is consistent with previous empirical study that luminance 
conditions take priority over cognitive demands in pupil diameter changes. Thus it is 
difficult to directly use the average pupil size or dilation to measure cognitive workload in 
the experiment. 
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Figure 1. The setting of task intervals for fine-grained analysis 

 
To overcome this problem, we propose a fine-grained analysis of pupillary response by 
dividing the task period into smaller-size intervals (see Figure 1). It is expected that the 
dynamic characteristics of cognitive process can be reflected by the fine-grained measures 
of pupillary response, which will improve cognitive workload measurement under 
complex environments. The corresponding measurement values significantly correlates to 
the task difficulty level (F=3.93, p<0.05 in ANOVA test).  
 
5.2 Workload measurement under luminance and emotional changes 
 
5.2.1 Design and procedure 
The subjects perform arithmetic tasks under changes of luminance condition and 
emotional arousal simultaneously. The whole experiment consists of three parts and lasts 
about 15 minutes. In the first part, the subject is asked to sum up numbers with blank 
background (black screen). In the second and third parts, the subject is asked to sum up 
numbers with pleasant and unpleasant background images shown on the screen. Different 
task difficulty levels and background conditions are employed to manipulate the cognitive 
workload, as well as background luminance and emotional arousal during the experiment. 
The setting of arithmetic task and its difficulty level are the same as those described in the 
previous section. 
 
To vary both the luminance condition and emotional arousal, pleasant and unpleasant 
background images are shown on the screen when the subject performs arithmetic tasks in 
the second and third parts of the experiment. A background image will be displayed for 6 
seconds before each arithmetic task. Subsequently, the subject will perform the arithmetic 
task with the background image remaining on the screen. Eight pleasant images (mean 
valence/arousal = 7.1, 5.7) and eight unpleasant images (mean valence/arousal = 2.8, 4.8) 
are selected from the IAPS database. The mean luminance of the images ranges from 53 to 
174. 
 
One minute resting data with black screen is recorded at the beginning and the end of the 
whole experiment for each subject. There are 8 arithmetic tasks randomly given in each 
experiment part (2 for each difficulty level). Twelve 24-to-35-year-old male subjects have 
been invited to participate in the experiment.  
 
5.2.2 Ongoing analysis 
To investigate the feasibility of robustly measuring cognitive workload even under the 
effects of noisy factors including luminance changes and emotional arousal, a simple 
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difference feature (the difference of the average pupil diameter between the first half and 
second half interval of the task) is employed to characterize the cognitive workload 
changes. The distribution of normalized feature values for different difficulty levels from 
all the pupillary response data is depicted in Figure 2. The feature value increases as the 
task difficulty level (F>8, p<0.01 in ANOVA test). 
 

 
Figure 2. Box plot of feature values (sample minimum, lower quartile, median, upper 
quartile, and maximum) corresponding to different task difficulty levels 
 
Our current work focuses on developing machine learning algorithms that can 
automatically find optimal features for robust workload measurement under noisy factors. 
There are quite a few systematic ways for solving this optimization problem, and Boosting 
is one popular algorithm that is suitable in this instance. Boosting is a type of learning 
algorithm, which creates a classifier that can predict the labels of unseen data based on the 
given examples and their labels. In its original form, the Boosting algorithm is used to 
form a strong classifier from a set of weak classifiers. A strong classifier is defined as a 
classifier that correlates arbitrarily well with the true classification, whereas a weak 
classifier only correlates slightly with the true classification. However it can also be used 
as a feature selection scheme if we relate each weak classifier to a single feature. For 
example, we can define a weak classifier )(xhj  that consists of a feature jf , a threshold 

jθ , and the parity 1±=jp , which indicates the following simple classification rule: if 

jjjj pxfp θ≤)(  then 1)( =xhj , otherwise 0)( =xhj . The Boosting algorithm then creates a 
strong classifier ∑=

j
jj xhxH )()( α  by selecting )(xhj  iteratively from a pool of weak 

classifiers, and each )(xhj  is weighted by jα , which relates )(xhj ’s classification accuracy 
on the examples. Additionally, the examples are reweighted so that future weak classifiers 
can focus on the examples misclassified by the previous classifiers. In this work, each 
extracted feature can be viewed as a weak classifier consisting of a time interval vector 

jT , a threshold and also a parity value. Currently jT  is set heuristically using the first and 
second half of each task. To improve accuracy of cognitive workload indexing, the 
optimal set of weak classifiers (features) can be obtained through the Boosting algorithm.  
 
6 Conclusion 
Formant frequencies have been studied, firstly, trying to understand the effect of cognitive 
load on formants, and hence the speech production system, and secondly, finding effective 
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features for cognitive load classification. In general, F1 is found to be increasing, and F2 
decreasing, when cognitive load is increased. Additionally, we have also found that 
formant frequencies exhibit vowel-specific shifts in their mean values under different 
cognitive load conditions. For classification purposes, not only formant features have 
lower dimensionality compared with the baseline system, they also outperform the 
baseline by a relative improvement of 12% when dynamic information is incorporated. 
Future work will include an investigation of different features to capture dynamic formant 
information, and their fusion with other vocal source features for improved cognitive load 
classification. 
 
Eye activity features have been shown to each provide significant discriminative power 
between different levels of induced cognitive load. Combination of these features has a 
distinct advantage as an objective measure of human cognitive load, as different inhibitory 
mechanisms require mental effort for eye functions that, when combined, provide rich and 
possibly complementary information about cognitive load. In turn, we may able to 
improve our understanding of human cognitive load in real time, which may prove 
significant in the design and evaluation of usable, intelligent adaptive interfaces. The 
experimental results also demonstrate the feasibility of cognitive workload measurement 
under complex environments using the fine-grained analysis. Our future work will be 
applying machine learning techniques to improve fine-grained analysis for cognitive load 
measurement. Going forward, we will investigate the robust fusion of different modalities 
that incorporates some other information streams, such as skin conductance and 
electroencephalogram (EEG). 
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1 Introduction 

 
Cognitive (mental) workload is an important issue in various application areas such as 
human computer interaction, adaptive automation and training, traffic control, 
performance prediction, and driving safety (Byrne and Parasuraman, 1996; Coyne et 
al., 2009; Grootjen et al., 2007; Wilson and Russel, 2006). Although numerous 
approaches have been developed to study cognitive workload or understand how hard 
the brain is working under various situations, it is still difficult to examine the 
cognitive workload of a person: “workload is a multidimensional, multifaceted 
concept that is difficult to define. It is generally agreed that attempts to measure 
workload relying on a single representative measure are unlikely to be of use” 
(Gopher and Donchin, 1986). Both theories and models have been proposed to 
explain cognitive workload. The multiple resource theory models cognitive resource 
of a person with three different dimensions: perceptual modality, information code, 
and processing stage (Wickens, 2002). On the other hand, the cognitive load theory 
models the interaction between limited working memory and relatively unlimited long 
term memory during the learning process (Sweller, 1988). The theory distinguishes 
between three types of cognitive workload: intrinsic load, extraneous load, and 
germane load. The first type is associated with the nature of learning material, while 
the latter two are influenced by instructional design (Paas et al., 2003). 
 
When a subject or operator is required to perform a given task, cognitive workload 
could be viewed as the interaction between the demands of the task and the capacity 
of the subject (Cain, 2007). Such point of view highlights two key issues of mental 
workload, the subject’s capacity and the task demands. The mental workload of a 
subject tends to increase when the cognitive capacity becomes low, and it tends to 
increase when the task demands become high. It should be noticed that both subject’s 
capacity and task demands are not necessarily constant values and they may change 
over time. The capacity of an operator may increase or decrease due to various factors 
such as training, fatigue, and environment. During a task, an operator can also 
experience varying levels of workload according to the task difficulty at different 
stages. 
 

 
Figure 1. The relationship between task demands, performance, and workload 

(Veltman and Jansen, 2006). 
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In recent decades, a great variety of measuring techniques, from simple ones such as 
questionnaires to complex ones such as functional braining imaging, have been 
developed to study cognitive workload (Gingell, 2003; Just et al., 2003; Wierwille 
and Eggemeier, 1993). Generally, these measuring techniques can be divided into 
three categories: subjective rating, performance measure, and physiological measure 
(Hart and Staveland, 1988; O’Donnell and Eggemeier, 1986; Wilson et al., 2004). 
Comparing with subjective rating, the latter two categories provide approaches to 
assess mental workload in an objective way. One main advantage of objective 
measurement is that it will not disturb the operation of the subject during the task 
execution. For performance based measure, the relationship between workload and 
performance is shown in Figure 1. An operator’s performance could be maximized if 
the task just requires normal mental workload. Meanwhile the performance tends to 
decline when the task demands become high or even exceed the capacity of the 
operator. The performance is also influenced by various factors such as attention, 
expertise, experience, stress, and motivation. 
 
With the advance of modern sensor technologies, more and more physiological 
measures have been developed for the assessment of cognitive workload. Popular 
physiological measures used in workload studies include brain wave, eye activity, 
respiration, heart rate, and speech, etc (Fournier et al., 1999; Scerbo et al., 2001; Yin 
et al., 2008). Among these techniques, video based workload measures, especially the 
ones through remote sensing, have attracted increasing attention since they can 
provide physiological evaluation of cognitive state in a non-intrusive and non-
obtrusive way. 
 
Although various studies exhibit the effects of mental workload on physiological 
measures, no single physiological measure will be sufficient to comprehensively 
characterize the workload, especially in the case of multidimensional task and/or 
dynamic circumstances. On the other hand, changes in physiological measures may 
take place due to a lot of other aspects, such as engagement, fatigue, stress, and 
environment. Mental workload is just one of these factors influencing physiological 
measures. 
 

2 Video Based Workload Measures 

 
For the convenience of cognitive workload measurement in different experiments, 
sensors are selected by the following three usability criteria (Voskamp and Urban, 
2009): non-intrusiveness, non-obtrusiveness, and simplicity. Usually a subject does 
not prefer a device that may invade the human body in any way. Ideally, the applied 
sensor will not interrupt the operator during the task execution. Moreover, it should 
not require much effort or training to gather the measurement data. 
 
For the effectiveness of mental workload measures in various cognitive tasks, sensors 
should also meet the following three technology criteria: sensitivity, efficiency, and 
compatibility. The selected sensor is required to provide data that is highly correlated 
to cognitive workload. For online or interactive systems, the collected data needs to 
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be transferred and processed in real-time. When multiple sensors are applied, the 
sensors should be easily combined with each other. 
 
2.1 Imaging sensors for workload studies 

 
Based on the sensor selection criteria for cognitive workload study, video camera or 
imaging sensors have attracted increasing interests during the development of 
workload measurement techniques. One valuable type of physiological measure 
involves workload effects on activities of human eye (Sirevaag and Stern, 2000). 
Especially, video based eye tracker becomes a popular approach for cognitive 
workload evaluation due to its sensitivity and convenience. Eye tracking data provides 
important information about human brain activity and autonomic nervous system, and 
it is highly correlated with subject’s mental workload. The visual information is 
acquired in a non-intrusive (particularly with remote systems, see Figure 2) and 
continuous way without interfering user’s activity during the task performance. 
Moreover, the video sequences of eye tracking data can be captured with high frame 
rate (more than 30 frames per second) and processed in real-time. 
 

   
Figure 2. Eye tracker and eye tracking data. 

 
Another type of imaging data, facial skin temperature, has been utilized as a 
physiological measure in mental workload studies as well. Facial skin temperature 
shows significant correlation to changes of mental status (Veltman and Vos, 2005). 
During the task execution, the autonomic nervous system of the subject causes the 
redistribution of blood flow. Consequently, it will result in the change of local skin 
temperature. With the use of thermal infrared camera (see Figure 3), the remote 
sensing of skin temperature can be achieved through measuring the infrared emitted 
from human body. 
 

  
Figure 3. Infrared camera and thermal imaging data. 
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On the other hand, advanced brain imaging techniques, such as magnetic resonance 
imaging (MRI) and near-infrared (NIR) neuroimaging, have also been employed to 
detect changes in cognitive workload (Callicott et al., 1999; He et al., 2007; Izzetoglu 
et al., 2005). However, due to the constraint of sensing technology and device, in 
practice it is hard for those sensors to capture the imaging data in a convenient and 
non-obtrusive way, which limits their usability as physiological measures of mental 
workload. 
 
2.2 Video based measures in cognitive tasks 

 
Eye tracking data provides rich information for cognitive workload assessment. 
Physiological workload features related to eye activity can be categorized into three 
classes: eye blink based measures, eye movement (saccade and fixation) based 
measures, and pupillary response based measures. 
 
In addition to eye activity and facial skin temperature, physical features of human 
behaviour such as head movement, hand gesture, and facial expression, which can be 
detected in a non-contact way using video camera, also provide useful information 
about changes in mental states (Grootjen et al., 2006). Since such physical behaviour 
measures are relatively less sensitive to cognitive workload, they are usually 
integrated with other physiological measures to achieve satisfactory performance. 
Table 1 lists popular video based measures that have been used in cognitive workload 
studies. Workload research groups working on video based physiological measures 
include Air Force Research Laboratory, Naval Health Research Center, Human 
Factors Group of Federal Aviation Administration, TNO Human Factors Research 
Institute, etc. 
 
To study the effects of mental workload on physiological measures, various cognitive 
tasks have been designed and tested in both laboratory and real world. The performed 
tasks include visual, auditory, arithmetic, executive, and complex ones such as driving, 
traffic control, and flight. Sometimes dual tasks are performed in the workload 
experiments. It should be noted that multitasking is common for human activities 
under laboratory and real world environment. For example, even a simple auditory 
addition task will involve both verbal processing and arithmetic processing; a driving 
task can be decomposed into at least two subtasks (visual and memory) that require 
the driver to keep the vehicle on the road and remember the route to the destination. 
When multiple physiological measures are available, it will be sensible to consider the 
embedded multimodal information with a composite index for mental workload 
evaluation (Sciarini and Nicholson, 2009). 



 5 

 
Table 1. Video based workload measures 

Category Measure Explanation 
Blink frequency The rate of blink times over a 

time period 
Blink duration The time interval during the 

closure of eye 

Eye blink based 

Blink interval The time interval between 
two successive eye blinks 

Fixation number The times of fixation 
 

Fixation frequency The rate of fixation times 
over a time period 

Fixation duration The time interval during a 
fixation 

Saccade rate The rate of saccade times 
over a time period 

Saccade extent The angular distance within a 
saccade 

Saccade duration The time interval during a 
saccade 

Saccade velocity The angular velocity within a 
saccade 

Scan path The trajectory of eye gaze 
 

Eye movement 
based 

Vergence angle The gaze difference between 
left eye and right eye 

Pupil dilation The increase of pupil size 
comparing with baseline 

Percentage change in 
pupil size 

The rate of pupil dilation 
over baseline pupil size 

Index of cognitive 
activity 

Based on changes in pupil 
dilation (Marshall, 2002) 

Pupillary response 
based 

Power spectrum  The power spectrum of pupil 
size data 

Nose temperature 
 

 Skin temperature 
based 

Forehead temperature 
 

 

Head movement 
 

 

Facial expression 
 

 

Physical behaviour 
based 

Hand movement 
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3 Pupillary response based measures 

 
The correlation between pupillary response and changes in mental workload has been 
observed for decades (Beatty, 1982). It is known that human eye is regulated by the 
autonomic nervous system, and pupil diameter will decrease or increase based on 
autonomic response. Increased pupil diameter is usually observed with an increase in 
workload demand. Generally, pupil dilation is an important physiological measure of 
mental efforts and has been widely applied as an effective indicator of cognitive 
workload. 
 
3.1 Correlation to workload in visual task 

 
Backs and Walrath (1992) evaluated the changes in mental workload when utilizing 
colour coding for symbolic tactical display in a visual search task. Participants were 
required to abstract different types of information from the display with varying 
symbol density. Two pupillary response measures, pupil dilation and constriction-
dilation difference, were collected as physiological indices of visual workload. It was 
found that pupillary response was not only affected by display parameters such as 
colour coding and symbol density, but also sensitive to the information processing 
demands of the visual task. 
 
In the experiment of a visuospatial task with varying target density (Van Orden et al., 
2001), changes in eye activity based physiological measures were examined during 
the task. Pupil diameter, together with blink frequency and fixation frequency, were 
found to be the most relevant eye activity features regarding the target density. 
Moreover, in the experiment of cognitive task and visual search task (Recarte et al., 
2008), the analysis results exhibited that pupil dilation could effectively measure the 
mental efforts during the cognitive tasks, and it could be used as a physiological 
predictor of visual impairment as well. 
 
Verney et al. (2001) investigated task-evoked pupillary response in the experiment of 
a visual backward masking task. The experimental results showed that pupil dilation 
response became significantly greater during the task condition than during the 
passive condition of stimulus viewing. Comparing with the non-mask condition, the 
pupil dilation exhibited significantly increase under the masking condition, especially 
when the interval between target and mask stimuli was prolonged. As pupillary 
dilation increased when resource allocation became intensive in the visual task, the 
experiment demonstrated that the mask could demand extra processing resources 
when it followed the target by prolonged interval. 
 
Both time domain and frequency domain of physiological data provide useful 
information for mental workload estimation. The power spectrum of pupillography, 
especially the band of lower frequency, could be employed as a physiological 
measure of mental activity as well. Nakayama and Shimizu (2004) studied the 
frequency information from the task-evoked pupillary response. In the experiment, 
participants performed visual following task together with/without oral calculation 
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task under different difficulty levels. Pupil size was recorded as physiological 
measurement during the task performance. It was found that for the oral calculation 
task, the power spectrum density of pupil size data increased with higher task 
difficulty level in the band of 0.1-0.5 Hz and 1.6-3.5Hz, which was consistent with 
the changes in average pupil size. 
 
Pupil dilation is known to exhibit effects of both the illumination condition of the 
visual field and the cognitive workload of the person while performing a visual task. 
Pomplun and Sunkara (2003) investigated effects of cognitive workload and display 
brightness on pupil dilation and their interaction in the experiment of a gaze-
controlled human-computer interaction task. During the visual task, three levels of 
task difficulty were combined with two levels of background brightness (black and 
white). The experimental results showed that under both black and white background 
conditions, the pupil area exhibited significant increase when workload demands 
became higher. However, under bright background even the pupil area corresponding 
to high level of task difficulty was significantly smaller than the pupil area 
corresponding to low level of difficulty under black background. Hence comparing 
with the task difficulty, the background brightness actually resulted in greater 
variation of pupil area. 
 
3.2 Correlation to workload in driving task 

 
Marshall (2002) proposed a physiological measure of cognitive workload, index of 
cognitive activity (ICA), from changes in pupil dilation. ICA would measure abrupt 
discontinuities in pupil diameter and try to separate pupil’s reflex reaction to changes 
in light from the reflex reaction to changes in workload. In the cognitive workload 
study with a simulated driving task (Schwalm et al., 2008), the experimental results 
showed that ICA increased when workload demands became high, which was induced 
by performing lane change manoeuvre or additional secondary task. The study 
exhibited the feasibility of ICA as a physiological measure of mental workload while 
driving. 
 
In a dual task experiment, Tsai et al. (2007) examined pupillary response when 
subjects performed driving task and auditory addition task simultaneously. It was 
found that pupil dilation was significantly greater when subjects were performing well 
in the auditory task than when subjects were performing poorly. 
 
In another experiment of dual task, Palinko et al. (2010) also studied the pupillary 
response with remote eye tracker. The subjects performed simulated vehicle driving 
as well as spoken dialogues. In the experiment, pupil size data acquired from remote 
eye tracker was used for the evaluation of the driver’s cognitive load. During the task, 
the physiological measure based on pupillary response exhibited significant 
correlation to those measures based on driving performance. A pupillary response 
based measure of cognitive load, mean pupil diameter change rate, was proposed to 
analyse workload changes with small time scales. The experimental results 
demonstrated the reliability of physiological measures obtained through remote eye 
tracking for cognitive load estimation. 
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3.3 Correlation to workload in arithmetic/memory task 

 
Murata and Iwase (1998) assessed mental workload based on the fluctuation of pupil 
area. In the experiment, a mental division task and a Sternberg memory search task 
were carried out with the controlling of respiration. During the task, the number of 
digits and the size of memory set were used to manipulate the mental workload level 
induced by task demands. For each subject, the autoregressive power spectrum of 
pupil area was used for cognitive workload assessment. It was found that the ratio of 
power at low frequency band (0.05-0.15Hz) over power at high frequency band (0.35-
0.4Hz) increased with higher level of task difficulty for both the arithmetic task and 
the memory task. The experimental results indicated that the fluctuation rhythm of the 
pupil area could be used as an effective physiological index to evaluate mental 
workload. 
 
Klingner et al. (2008) examined the pupil measuring capability of video based eye 
tracker for cognitive workload evaluation. In the experiment of several tasks including 
arithmetic and memory ones, subtle changes of pupil size in the task-evoked pupillary 
response were detected using remote eye tracker. Comparing with the results in earlier 
studies, it was found that cognitive workload could be effectively measured through 
remote eye tracking. Moreover, the experimental results exhibited the feasibility of 
analysing the timing and magnitude of short-term pupillary response based on the 
collected eye tracking data, which could provide more details about changes in 
cognitive workload. 
 
3.4 Correlation to workload in other tasks 

 
In an early study, Beatty (1982) investigated task-evoked pupillary response in the 
experiments of various tasks such as language processing, reasoning, and perception. 
Pupil dilation was exhibited as a reliable physiological measure of mental state or 
processing load during the task performance. Similarly, in the recent experiment of a 
combat management task involving target identification (Greef et al., 2009), pupil 
dilation also increased when cognitive workload became high. 
 
In the experiment of air traffic controller task (Ahlstrom and Friedman-Berg, 2006), 
mean pupil diameter was employed as the physiological measure of mental workload. 
It was found that comparing to when using a dynamic forecast tool, the mean pupil 
diameter became significantly larger when using a static forecast tool. The 
experimental results indicated that the use of static tool led to higher cognitive 
workload. In another experiment of a video game task (Lin and Imamiya, 2006), it 
was also found that pupil size increased when task difficulty changes from low level 
to high level. 
 
For interruption management in interactive systems, notifications delivered during the 
period of lower mental workload would become less interruptive (Iqbal et al., 2004). 
Bailey and Iqbal (2008) empirically examined changes in mental workload during 
goal-directed interactive tasks including reading comprehension, mathematical 
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reasoning, product searching, and object manipulation. Percentage change in pupil 
size was used as the task-evoked pupillary response for continuous workload 
measurement. The experimental results showed that workload would decrease at 
subtask boundaries, and the decrement would be greater at boundaries when the 
operators accomplished large chunks of the interactive task. For operators of 
interactive systems, pupillary response was exhibited to be a meaningful index of 
mental workload during the execution of a hierarchical task. 
 
Although mental workload has been exhibited to decrease at subtask boundaries, it 
has not been examined for subtasks requiring different devices such as notebook 
computer and mobile phone. Tungare and Perez-Quinones (2009) proposed to study 
the changes in mental workload for multi-device personal information management. 
In an ongoing experiment, participants would perform information collection tasks 
using different devices. Pupil diameter would be monitored to provide continuous 
measurement of workload. 
 
Existing software analysis tools usually can generate the graph of pupillary response 
over time and playback the video of user’s screen interaction, but may not allow the 
response data to be interactively explored with regard to the task execution model. To 
facilitate analysis of pupillary response data in relation to the hierarchical structure of 
the task, Bailey et al. (2007) developed an interactive analysis tool to analyse mental 
workload if the task could be decomposed into hierarchical subtasks. The workload 
data was precisely aligned to the corresponding task execution model during the 
analysis. 
 
4 Eye blink based measures 

 
Pervious research work has exhibited that eye blink is a useful measure of mental 
workload (Fogarty and Stern, 1989), especially for workload demands associated with 
visual tasks. In several experiments using either electrocculogram (EOG) or video eye 
tracker, blink rate decreases with an increase in cognitive workload; increase of blink 
interval is observed with increased mental workload; meanwhile blink duration tends 
to decrease against more intense processing load. Such blink based physiological 
response help human eye to save more time to handle visual information during the 
task performance. 
 
4.1 Correlation to workload in visual task 

 
Van Orden et al. (2001) investigated changes in various eye activity based measures 
in a visuospatial memory task with varying target density. Two eye blink based 
measures, blink frequency and blink duration were monitored during the task. In the 
experiment, subjects were required to recognize and remember each target’s 
identification (friend or enemy) on the display for appropriate action (fire or not) 
when the targets were approaching. It was demonstrated that both blink frequency and 
blink duration declined with increasing target density during the visuospatial memory 
task. 
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Recarte et al. (2008) examined the concurrent validity of eye activity based 
physiological measures for mental workload evaluation. The participants performed 
single cognitive task and dual task (cognitive task and visual search) in the 
experiment. Under single task condition, blink rate and pupil dilation showed 
concurrent validity for mental workload assessment. However, the blink rate exhibited 
opposite effects under the dual task condition. The blink rate increased when the 
mental workload of cognitive task became high, meanwhile the blink rate deceased 
when visual demands became high. 
 
Startle eye blink reflex is also affected by workload demands during visual task. 
Neumann (2002) studied changes in startle blink during a continuous visual task with 
different levels of mental workload. In the experiment, subjects performed a single 
task of visual horizontal tracking or a dual task of both visual horizontal tracking and 
visual gauge monitoring. The startle blink reflex was evoked by a noise burst during 
the task execution. Experimental results exhibited that compared with pre-task and 
post-task conditions, startle blink was suppressed during the task performance. 
Moreover, compared with the single task condition, the suppression became more 
significant under the dual task condition. The startle blink rate and other measures 
such as subjective rating and heart period showed concurrent validity for different 
workload levels, which indicated that startle blink could be a useful physiological 
measure of mental workload during the visual task. 
 
4.2 Correlation to workload in flight task 

 
Veltman and Gaillard (1998) investigated the sensitivity of various physiological 
indices, including eye blinks, in simulated flight tasks. In the experiment, subjects 
simultaneously performed a continuous memory task during the flight. Eye blink 
based measures including blink interval, blink duration, closing time and amplitude 
were monitored during the experiment. Comparing with the measurement data during 
rest status, blink interval increased and blink duration decreased when subjects 
performed flight tasks. In addition, blink interval increased and blink duration 
decreased when subjects were processing more visual information during the flight. 
On the other hand, the experimental results also showed that the blink interval 
decreased with increasing difficulty level of the memory task. The decrement was 
probably due to sub-vocal activity that stimulated the muscles of eyelid and resulted 
in increased eye blinks. 
 
Similar results were found by Wilson (2002) in the experiment of real flight task. For 
each pilot, eye blink was recorded as one physiological measure during a flight with 
both visual rule and instrument rule conditions. The results showed that blink rate 
decreased when the segments of flight became more visually demanding. In the 
experiment, each pilot repeated the same task to examine the reliability of the 
physiological measures, and similar response data was obtained for the two rounds. 
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4.3 Correlation to workload in traffic control task 

 
Brookings et al. (1996) examined the sensitivity of physiological response to changes 
in cognitive workload during simulated air traffic control task. In the experiment, eye 
blink rate exhibited significant effects of task difficulty. The level of task difficulty 
was manipulated by varying traffic volume and traffic complexity. Eye activity based 
physiological measures including blink rate were monitored during the traffic control 
task. The experimental results showed that blink rate decreased with increasing 
cognitive load. 
 
Ahlstrom and Friedman-Berg (2006) investigated the effect on cognitive workload 
with/without the use of weather display during air traffic controller task. In the 
experiment, blink frequency and blink duration were used as two of the physiological 
workload measures. It was found blink duration became significantly shorter when 
controllers operated without using weather display, corresponding to a higher level of 
controller workload. The experimental results also indicated that comparing with 
subject rating, eye activity based features was relatively sensitive to the variation of 
mental workload at system interaction stages. 
 
4.4 Correlation to workload in other tasks 

 
In an experiment of dual task, Tsai et al. (2007) investigated changes in eye activities 
while subjects performed driving task and paced auditory serial addition task. In the 
experiment, two eye blink based physiological measures, blink frequency and blink 
duration were recorded. Experimental results exhibited that comparing with the 
measurement data in the single task of driving, blink frequency increased in the dual 
task of both driving and auditory addition. In another experiment of complex decision 
making task (Boehm-Davis et al., 2006), the results exhibited that eye blinks would be 
suppressed during cognitive processing comparing to when the processing was 
accomplished. 
 
Ryu and Myung (2005) employed multiple physiological measures to evaluate the 
mental workload in a dual task with different difficulty levels. In the experiment, the 
subjects simultaneously performed a tracking task of simulated instrument landing 
and mental arithmetic task of adding pairs of numbers. Eye blink interval was 
employed as one physiological measure for mental effort assessment in both tasks. It 
was found that the blink interval revealed sensitivity to the changes in mental 
workload for the tracking task, but not for the arithmetic task. 
 

5 Eye movement based measures 

 
Eye movement mainly consists of two forms of activity: fixation and saccade. During 
the visual scan, human eyes are directed to interesting areas where fixations occur. A 
fixation is a steady focus of the eye, inputting detailed information of the visual 
stimulus into human vision system. The movement from one fixation stimulus to 
another is defined as a saccade. Previous studies revealed correlations between 
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changes in mental workload and properties of eye movement (May et al., 1990). For 
example, the increase in fixation time has been observed with the increase of mental 
workload. In several experiments saccade based measures such as saccade speed also 
exhibited sensitivity to changes in mental workload. 
 
5.1 Correlation to workload in visual task 

 
In the task of visual search of symbolic displays (Backs and Walrath, 1992), number 
of eye fixation, fixation duration, and fixation frequency were employed as eye 
movement based physiological indices. It was found that the number of eye fixations 
was affected by both colour coding and symbol density. In the experiment participants 
made fewer fixations to search colour-coded displays than monochrome displays, and 
fewer fixations to search low-density displays than high-density displays. Moreover, 
compared to when searching monochrome displays, fixation duration became shorter 
and fixation frequency became higher when searching colour-coded displays. 
 
In the visuospatial memory task of target identification (Van Orden et al., 2001), the 
task difficulty was manipulated by varying the number of targets presented on the 
display. Physiological measures including fixation frequency, dwell time, and saccade 
extent were recorded for each participant in the experiment. It was found through 
nonlinear regression analysis that among the eye movement based measures, fixation 
frequency revealed significant correlativity to the target density in the visuospatial 
task. 
 
Frequency information of eye movement also provides a useful physiological index of 
mental workload. Nakayama and Schimizu (2004) performed frequency analysis of 
eye movement data in both single task of ocular following and dual task of ocular 
following and oral calculation. After correcting the artefacts of eye blinks in saccadic 
eye movement, cross spectrum density, which exhibits relationship between 
horizontal and vertical eye movement, was employed as a workload measure. Given 
the eye movement data of different task difficulty levels, the cross spectrum density 
exhibited significant differences between them in the frequency band of 0.6-1.5Hz. 
 
5.2 Correlation to workload in driving/riding task 

 
In the experiment with a dual task of driving and auditory addition (Tsai et al., 2007), 
three physiological measures of eye movement, including fixation frequency, fixation 
duration, and horizontal vergence, were assessed as the indicator of cognitive 
workload. Comparing to when the subjects performed poorly in the auditory task, the 
horizontal vergence increased when subjects performed well. Although there was no 
significant change in fixation frequency, it was found that fixation duration before 
incorrect responses of auditory addition were significantly shorter than fixation 
duration before correct responses in the dual task. The experimental results indicated 
that eye movement based measures could be utilized to both evaluate cognitive load 
and predict task performance in real-time. 
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In the experiment of motorbike riding task, Di Stasi et al. (2009) studied the 
relationship between cognitive workload and risk behaviour. Eye movement based 
measures including saccadic number, saccadic amplitude, saccadic duration, peak 
saccadic velocity, fixation number, fixation duration were used as physiological 
indices of mental workload. The experimental results showed that comparing with 
low-risky participants, the cognitive workload became higher for high-risky 
participants, meanwhile the peak saccadic velocity could be used as a reliable 
physiological index of risk behaviour. 
 
5.3 Correlation to workload in traffic control task 

 
In an experiment of air traffic control task (Brookings et al., 1996), subjects 
performed simulated traffic control tasks with varying traffic volume and traffic 
complexity. Two eye movement based workload measures, saccade rate and 
amplitude, were recorded together with other physiological measures during the 
control task. However, the saccade measures did not demonstrate significant effects of 
task difficulty or traffic complexity in the experiment. 
 
Di Stasi et al. (2010) studied the effects of mental workload on eye movement based 
indices in simulated air traffic control task. In the experiment, participants performed 
multitasks with three levels of task difficulty according to the cognitive resource 
requirement. Three eye movement based physiological measures, saccadic amplitude, 
saccadic duration, and saccadic peak velocity, were recorded using video eye tracker. 
Experimental results showed that the peak velocity decreased with increasing task 
difficulty, indicating the sensitivity of saccadic movement to changes in mental 
workload. 
 
5.4 Correlation to workload in other tasks 

 
Lin and Imamiya (2006) explored the multimodal information of workload measures 
for usability evaluation. Multiple physiological measures, including fixation number, 
fixation duration, scan path length, are recorded to estimate cognitive workload when 
subjects were performing a video based action-puzzle game task. In the experiment, 
eye movement data exhibited correlation to mental workload level. It was found that 
mean values of three eye movement based workload measures increased when the 
task difficulty changed from low level to high level. Saccade speed also exhibited 
correlation with heart rate variability during the game task. Moreover, a composite 
physiological measure combining eye fixations with hand movement (mouse clicks) 
was proposed to improve the evaluation of task performance. 
 
In the experiment of a combat management task requiring target identification and 
weapon engagement, Greef et al. (2009) investigated three aspects of eye movement, 
fixation time, saccade distance, and saccade speed, for objective assessment of mental 
workload. To examine their correlativity with changes in workload, these features of 
eye activity were monitored by video eye tracker under different levels of mental 
workload. The experiment results exhibited that fixation time significantly increased 
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when the mental workload became high. Meanwhile saccade distance and saccade 
speed did not exhibit any significant effects. 
 

6 Skin temperature based measures 

 
Facial skin temperature can be employed as a type of non-intrusive, non-obtrusive, 
and real-time physiological measure for mental workload assessment. It has received 
increasing attention in cognitive workload studies as the cost of thermal infrared 
camera decreased in recent years. Especially, the skin temperature drop of nose area 
with increased mental workload has been observed in a few studies. 
 
Veltman and Vos (2005) examined the variation of subject’s facial skin temperature 
in a continuous memory task with two difficulty levels. The experimental results 
demonstrated the correlation between nose skin temperature and changes in mental 
workload. To enhance the sensitivity and accuracy, the facial skin temperature could 
be integrated with other physiological measures for cognitive workload evaluation. 
 
Or and Duffy (2007) also studied changes in facial skin temperature for automated 
mental workload assessment. In the experiment, subjects performed driving test under 
different traffic conditions (city/highway) in simulator or real vehicle. Mental 
arithmetic test was used as a secondary task. Both forehead temperature and nose 
temperature were monitored during the experiment. It was found that under all 
simulator test conditions, nose skin temperature dropped significantly after the driving. 
The dual task of driving and arithmetic resulted in a greater nose temperature drop 
than the driving only task. In addition, the experimental results exhibited a significant 
correlativity between the nose skin temperature and the subjective rating of mental 
workload. Comparing with the real driving task, the simulated driving task had a 
higher subjective rating and it was observed with a greater change of nose skin 
temperature. 
 
Previous research work on facial skin temperature has revealed its correlation to the 
variation of mental workload. However, it has also been noticed that the skin 
temperature based measures may not achieve sufficient sensitivity, especially for 
complex tasks or practical applications. Consequently, the combination of skin 
temperature and various other measures has been proposed to improve the 
performance of workload assessment. Wang et al. (2007) presented a composite 
workload index using three video based physiological measures, facial skin 
temperature, eye blinks, and pupil dilation. All the measures could be unobtrusively 
captured in real-time for workload evaluation. 
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7 Noisy factors in workload measures 

 
Although a number of studies exhibited empirical evidence that eye activity based 
physiological measures could be used as an effective indicator of mental workload 
increase, the measures may fail to evaluate workload under complicated situations. 
For example, pupil dilation could be influenced by experimental environment like 
illumination condition. In addition to the experiment involving background lightness 
(Pomplun and Sunkara, 2003), Kramer (1991) reported the failure of workload 
measure due to factors unrelated to the cognitive task, such as changes in ambient 
illumination or screen luminance, which might give rise to greater variation of pupil 
size. In an experiment on the effects of perceptual/central and physical demands on 
physiological measures (Backs et al., 1994), it was found that physiological measures 
would be more sensitive to physical demands than to perceptual/central demands. In 
another experiment study of Sternberg memory search task (Van Gervan et al., 2003), 
the analysis results also demonstrated effects of aging on pupillary response. 
Moreover, to evaluate the usability of eye tracking data for cognitive workload 
measurement, Pomplun and Sunkara (2003) studied the distortion of pupil size caused 
by eye movements. The pupil size observed by the eye tracking camera would be 
affected by the gaze angle of the user. The eye tracking system was calibrated based 
on neural network to correct the geometry distortion of pupillary response data. 
 
Video based physiological measures can also be influenced by a variety of affective 
factors including anxiety, engagement, fatigue, and stress (Chen, 2006; Pavlidis et al., 
2000; Prinzel et al., 1999). For example, eye blinks, heart rate variability, or 
electroencephalogram (EEG) could be used to evaluate engagement and fatigue as 
well (Heishman and Duric, 2007; Zhang et al., 2008). Genno et al. (1997) investigated 
the changes in facial skin temperature caused by subject’s stress or fatigue during the 
task. In the experiment of a task inducing stress, the nose skin temperature exhibited 
significant drop when the task started or an unexpected emergency alarm took place. 
Moreover, the nose skin temperature dropped significantly as well in the experiment 
of another task inducing fatigue. Meanwhile, Puri et al. (2005) also exhibited the 
correlation between forehead temperature and emotional state through thermal 
imaging. 
 
Although it would be ideal to find a general model of human cognitive workload, 
mental workload could be personal characteristics of each subject. Thomas et al. 
(2009) studied personalized mental workload for exercise intensity measure. In the 
experiment, ratio of non-blink to blink frames and pupil radius were detected for each 
participant during different exercise tasks. It was suggested that due to non-stationary 
and nonzero-state nature of human being system, mental workload should be 
modelled individually and adaptively. 
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Table 2. Cognitive task–physiological measure matrix 

Task B
F 

B
I 

B
D 

F
F 

F
D 

S
D 

S
S 

P
D 

P
C 

P
S 

I
C 

S
T 

H
M 

Air traffic control task (Ahlstrom and 
Friedman-Berg, 2006) 

••••  ••••   ••••  ••••      

Air traffic control task (Brookings et 
al., 1996) 

••••     ••••        

Air traffic control task (Di Stasi et al., 
2010) 

     •••• ••••       

Auditory two-back task (Guhe et al., 
2005) 

••••       ••••     •••• 

Cart driving and stationary bike 
exercise (Thomas et al., 2009) 

       ••••      

Cognitive task and visual search task 
(Recarte et al., 2008) 

••••       ••••      

Combat management task (Greef et al., 
2009) 

    •••• •••• •••• ••••      

Continuous memory task (Veltman and 
Vos, 2005) 

           ••••  

Division task and Sternberg memory 
search (Murata and Iwase, 1998) 

         ••••    

Driving task and auditory addition task 
(Tsai et al., 2007) 

••••  •••• •••• ••••   ••••      

Driving task and secondary task 
(Schwalm et al., 2008) 

          ••••   

Driving task and spoken task (Palinko 
et al., 2010) 

       ••••      

Driving task and verbal/spatial-
imagery task (Zhang et al., 2004) 

       ••••      

Document editing, email classification, 
route planning (Bailey and Iqbal, 2008) 

        ••••     

Flight task and memory task (Veltman 
and Gaillard, 1998) 

 •••• ••••           

Flight task with visual/instrument flight 
rule (Wilson, 2002) 

••••             

Gaze-controlled interaction task 
(Pomplun and Sunkara, 2003) 

       ••••      

Language, visuospatial, and executive 
processing (Just et al., 2003) 

       ••••      

Mental arithmetic, short-term memory, 
aural vigilance (Klingner et al., 2008) 

       ••••      

Motorbike riding task (Di Stasi et al., 
2009) 

   •••• •••• •••• •••• ••••      

Ocular following and oral calculation 
(Nakayama and Shimizu, 2004) 

       ••••  ••••    
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Table 2. Cognitive task–physiological measure matrix (continued) 

Task B
F 

B
I 

B
D 

F
F 

F
D 

S
D 

S
S 

P
D 

P
C 

P
S 

I
C 

S
T 

H
M 

Reading, reasoning, searching, and 
object manipulation (Iqbal et al., 2004) 

        ••••     

Simulated/real driving task and mental 
arithmetic task (Or and Duffy, 2007) 

           ••••  

Tracking task and mental arithmetic 
task (Ryu and Myung, 2005) 

 ••••            

Tracking task and mental arithmetic 
task (Wang et al., 2007) 

 ••••      ••••    ••••  

Video game (action-puzzle) task (Lin 
and Imamiya, 2006) 

   •••• ••••   ••••     •••• 

Visual backward masking task (Verney 
et al., 2001) 

       ••••      

Visual horizontal tracking and visual 
gauge monitoring (Neumann, 2002) 

•••• ••••            

Visual search of symbolic displays 
(Backs and Walrath, 1992) 

   •••• ••••   ••••      

Visuospatial memory task (Van Orden 
et al., 2001) 

••••  •••• •••• •••• ••••  ••••      

Physiological measures. BF: blink frequency, BI: blink interval/latency, BD: blink 
duration, FF: fixation frequency, FD: fixation duration, SD: saccade distance/extent, 
SS: saccade speed, PD: pupil diameter/dilation, PC: percentage change in pupil size, 
PS: power spectrum, IC: index of cognitive activity, ST: skin temperature, HM: 
head/hand movement. 
 

8 Multimodal measures and data fusion 

 
Although physiological measures have exhibited reliable sensitivity to the variation of 
mental efforts when operators experience different levels of task demands, it is 
generally agreed that no single physiological measure can comprehensively describe 
cognitive workload. For example, in an experiment of actual flight scenario (Hankins 
and Wilson, 1998), eye activity only showed sensitivity to workload during flight 
segments that were visually demanding, meanwhile heart rate and EEG respectively 
showed sensitivity during flight segments of instrument rule and those requiring 
mental calculation. The experimental results demonstrated the multiple physiological 
measures could provide unique and non-overlapping information about subject’s 
mental workload. 
 
As multitasking is common in human activities, different subtasks may have different 
effects on individual physiological measures. In terms of the multiple resource theory 
for cognitive workload, the processing resource indexed by one video based 
physiological measure could be different from those indexed by other types of 
physiological measures. Table 2 lists recent research work using physiological 
measures for workload evaluation in various cognitive tasks. Multiple workload 
measures, especially physiological measures, could provide a comprehensive picture 
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of the processing demands during the task execution. To further increase the 
performance of cognitive workload assessment, it is reasonable to combine different 
video based measures and/or other physiological measures. 
 
8.1 Multiple measures vs. single measure 

 
The sensitivity of individual physiological measures to workload demands could be 
very different. For example, in the experiment of different flight tasks (Veltman and 
Gaillard, 1998), cognitive workload measures including heart period, blood pressure, 
respiration, and eye blinks were recorded during the task. Although all the measures 
showed the difference between rest and fight, only heart period was sensitive to all the 
difficulty levels in the tunnel fight task. 
 
Lin and Imamiya (2006) studied composite physiological measure through integrating 
eye movement and hand movement for mental effort evaluation when subjects 
performed a video game task. Although single physiological measures could only 
distinguish between the low difficulty level and high difficulty level, the composite 
measure was able to detect the variation of mental efforts for all the difficulty levels 
of the game task. 
 
Similarly, Ryu and Myung (2005) showed that in the experiment with a dual task of 
tracking and arithmetic, none of the three physiological measures, including alpha 
suppression of brain activity, eye blink interval, and heart rate variability was able to 
identify the variation of the mental workload for both tasks. The alpha suppression 
was sensitive to the mental workload for the arithmetic task, but not for the tracking 
task. On the contrary, the blink interval and heart variability revealed sensitivity to the 
workload for the tracking task, but not for the arithmetic task. Although no single 
measures revealed sufficient sensitivity, significant variation of mental workload was 
successfully detected for both tasks when all these measures were combined 
altogether. 
 

 
Figure 4. Multiple resource model (Wickens, 1984). 
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Consistent with the multiple resource theory (see Figure 4), previous studies indicated 
that task demands for different mental resource could be reflected by different 
physiological measures. The combination of multiple physiological measures has 
attracted increasing interests in cognitive workload studies, so that the explanatory 
power of multimodal information could be maximized. 
 
8.2 Multimodal data fusion 

 
The integration of multimodal information from multiple physiological measures is a 
non-trivial problem. Sometimes multiple measures could provide convergent results 
under single task condition, but inconsistent results under dual task condition. The 
way of data fusion is a key issue to efficiently and effectively integrate multimodal 
physiological features. For example, in a dual task experiment three workload 
measures based on brain activity, cardiac signal, and eye blink were combined into 
one composite measure using different weight coefficients (Ryu and Myung, 2005). It 
was shown that the composite measure significantly improved the sensitivity of 
workload assessment in the dual task. 
 
Van Orden et al. (2001) employed artificial neural network to combine various eye 
activity based physiological features including blink frequency and duration, fixation 
frequency and time, saccadic extent, and pupil diameter for mental workload 
assessment. For each participant, a neural network model was trained on two sessions 
and tested on another session. Experimental results exhibited multiple eye activity 
based measures could be combined to produce reliable physiological index of 
workload in visuospatial task. In another experiment inducing fatigue (Van Orden et 
al., 2000), eye activity based features were also input to a neural network to estimate 
the fatigue state during the visual task performance. 
 
Guhe et al. (2005) presented a Bayesian network approach to measure cognitive 
workload in real-time using multiple video based measures. The auditory two-back 
task, in which each participant was required to determine whether the current letter 
was equal to or different from the letter presented two back, was performed in the 
experiment. Video based features including blink frequency, eye closure, saccadic 
movement, eye gaze, pupil dilatation, head movement, and mouth openness were 
recorded for each participant in the experiment. To make the model adaptive to both 
individual users and the specific task, Bayesian network was employed to fuse 
multiple video based measures for mental workload evaluation. 
 
Zhang et al. (2004) proposed a machine learning approach for driver workload 
estimation using multiple physiological features including eye gaze and pupil 
diameter. Instead of analysing the significance of individual measures, all the 
measures were considered simultaneously during the task. The estimation of cognitive 
workload was optimized automatically with the use of machine learning techniques 
such as decision tree and Bayesian learning. 
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The combination of eye activity based physiological measures and facial skin 
temperature has also been proposed to enhance the sensitivity of mental workload 
measurement. Wang et al. (2007) presented a composite workload index based on 
facial skin temperature, eye blinks and pupil dilation. To improve the overall 
sensitivity to cognitive workload, the way of integrating eye activity features and 
facial skin temperature would be constructed through factor analysis and regression 
analysis. 
 

9 Future work 

 
Besides its sensitivity to changes in mental workload and usability as an objective 
measure, video based physiological measure has an attractive advantage that the 
measurement data can be captured in a non-intrusive and non-obtrusive way. The 
imaging sensors, especially the remote ones, minimize user interference and enable 
continuous data acquisition. Therefore, it is expected that video based physiological 
measures will become more and more popular in research and application areas 
involving cognitive workload. Meanwhile, various technique issues could be further 
investigated to improve the overall accuracy and sensitivity for mental workload 
assessment. 
 
Video based workload measures such as pupillary response and skin temperature may 
be influenced by noisy factors relating to sensor technology. For example, subtle 
changes in physiological measures could be ignored due to the insufficient accuracy 
or resolution of the sensor. For remote eye tracker, the pupil area observed in video 
frames is also affected by the pose of human face. The sensitivity of physiological 
measures could be further enhanced by correcting the noises and distortions 
introduced during the sensing process. 
 
As cognitive workload is multidimensional, single dimension of workload may have 
different effects on individual physiological measures. Previous studies also showed 
that different physiological measures could provide both overlapping and non-
overlapping information about cognitive workload. Hence it will be useful to study 
the correlation between various video based physiological measures, especially under 
multitasking conditions. 
 
Multiple physiological features could provide more information and result in better 
evaluation of mental workload than single physiological input. However, simple 
combination methods such as voting or linear weighting might not improve the 
overall accuracy and sensitivity for cognitive workload assessment. With the 
development of machine learning and information fusion techniques in recent years, 
probabilistic models and tools such as dynamic Bayesian network and Markov 
decision process could be employed to improve the fusion of multiple physiological 
measures. 
 
On the other hand, an operator’s mental workload during a task is determined by both 
demands of the task and capacity of the subject. From previous work on mental 
workload measures, it has been observed that physiological data is sensitive to the 
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levels of task difficulty. Besides, the physiological measures may exhibit the effects 
of cognitive capacity as well. The correlation between video based physiological 
measures and subject’s capacity should be further investigated to improve the 
explanatory power of physiological data. 
 
Furthermore, both cognitive workload and physiological measures are influenced by 
many factors. For example, cognitive workload is dependent on operator’s level of 
training, expertise, experience, motivation, etc. On the other hand, physiological 
measures are affected by various factors such as fatigue, stress, engagement, and 
environment. Ignoring these aspects may lead to the failure of physiological measures 
for mental workload assessment. The efficiency and effectiveness of video based 
physiological measures could be significantly enhanced when more of these factors 
are considered in a comprehensive way. 
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ABSTRACT 

The measurement of a user’s mental effort is a problem 
whose solutions may have important applications to 
adaptive interfaces and interface evaluation. Previous 
studies have empirically shown links between eye activity 
and mental effort; however these have usually investigated 
only one class of eye activity on tasks atypical of HCI. This 
paper reports on research into eight eye activity based 
features, spanning eye blink, pupillary response and eye 
movement information, for real time mental effort 
measurement. Results from an experiment conducted using 
a computer-based training system show that the three 
classes of eye features are capable of discriminating 
different cognitive load levels. Correlation analysis between 
various pairs of features suggests that significant 
improvements in discriminating different effort levels can 
be made by combining multiple features. This shows an 
initial step towards a real-time cognitive load measurement 
system in human-computer interaction. 

Author Keywords 

Mental effort, cognitive load, pupillary response, eye blink, 
eye movement, adaptive interfaces. 

ACM Classification Keywords 
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Measurement, human factors. 

INTRODUCTION 

Recently, research effort has been devoted towards making 
human-computer interaction closer to human-human 
communication, exemplified by affective computing for 
emotional intelligence, animated interface agents for 
trustworthiness, adaptive systems for personalized access  
and the development of multimodal user interfaces for 
increased flexibility. During interaction, an important 
characteristic of users is that their limited attention and 
working memory affect the commitment of cognitive 
resources, and users’ different cognitive strengths and 

limitations affect individual task performance. Quantifying 
and monitoring human mental effort, therefore, holds the 
potential to prevent cognitive overload and provides 
support for a streamlined interaction without task failure. 

With the aim of measuring mental effort, performance 
scoring (e.g. reaction time and accuracy) is an alternative 
recourse, likewise the subjective self-rating of users’ 
perceptions of their tasks can be employed; however these 
rely on overt and discrete responses, and above all they are 
post-processing measurements [2]. Mental effort, on the 
other hand, is another aspect of cognitive load and is 
associated with cognitive capacity. It is believed to reflect 
cognitive load and is embodied by physiological variables 
[4]. Recent ubiquitous computing technology greatly 
facilitates the application of physiological techniques, 
through portability, unobtrusiveness and real time 
measurement. In this paper, our aim is to take the first step 
in developing a real time cognitive load measurement, 
based on one such physiological technique as an effective 
means of measuring how much mental effort has been 
devoted and in turn, whether the cognitive load limit has 
been reached.  

RELATED WORK 

Among all possible physiological measures, eye activity 
provides rich information about cognition and human 
mental effort. For example, task-invoked pupillary response 
is believed to be mainly due to the decrease in 
parasympathetic activity in the peripheral nervous system 
and has been found to vary linearly with the amount of 
information processed in short-term and long-term memory 
tasks as well as task difficulty levels [2]. Endogenous eye 
blinks are controlled by the central nervous system and tend 
to be inhibited during attention-demanding tasks to 
maximize stimulus perception [1,2]. Fixations and saccades 
are the main forms of the central controlled eye movement, 
which is thought to be a combination of bottom-up and top-
down processes. The first sweep of the scene is basically a 
feature-driven process and more top-down control is varied 
by the effort to spread attention across the visual field to 
selected task-related objects [3]. 

Previous research on correlates of eye activity has mainly 
focused on single measures as indicators of workload in 
specific tasks such as working memory span [7] or 
attention-demanding tasks (for a general review see [1,2]). 
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Some used two or three classes of eye activity in simulated 
warfare management tasks [5,6]. In this paper, we measure 
human mental effort through the three classes of eye 
activity collected in a computer-based training system. We 
examined their sensitivity for analysis of user mental effort, 
with implications for user modeling and interface design.  
This study, in a semi-realistic scenario, is one of multiple 
steps towards a real-time system to measure human mental 
effort via eye activity. 

RESEARCH METHOD 

Participants  
Twelve paid male recreational basketball players, each with 
more than two years’ experience, aged 19-36, completed 
this experiment. 

Task Description and Procedure 

A computer-based training application, running on a tablet 
monitor, was designed for basketball players to learn 
playing strategies by observing team player positions in 
basketball game videos. The goal of this task was to detect 
and identify defenders and attackers during a video clip of 
an actual game, and recall their positions around the ball at 
the end of each 15-second clip. 

During each session, subjects were seated in a quiet room. 
A head banded eye tracker was then attached. The camera 
angle was fixed during the recording of the experiment. 
Subjects were instructed to watch a game video clip and 
recall player positions by writing them down on a blank on-
screen basketball court schematic using simple signs: 
crosses and circles. They completed 6 sub-tasks for each 
low, medium and high level of mental demand, with a few 
minutes break between each level. All participants 
completed 8 sessions in different days, and here we 
consider one of the sessions (7) for data analysis1.  

Cognitive Load Modulation 

Task difficulty levels were varied by the number of player 
positions to be recalled. In the low cognitive load level, 3 
player positions were required, while 6 positions were 
required by the medium level and all 10 positions in the 
high level.  

Apparatus 

Eye activity was monitored using an ASL Eye-Trac 6 head 
mounted eye tracker system. Subjects were free to move 
their head but instructed to keep their eyes within the screen 
display range. Data was collected in a scene video and an 
eye video, where the scene and dynamic pupillary 
responses respectively were recorded at 15 frames per 
second.  

Data Reduction and Variables  

The data from six subjects for low and medium levels were 
used1. Measures of blink, pupillary response, fixation and 
                                                           
1 Video data for many other sessions, subjects and levels 
were unfortunately found to be corrupted, hence this subset. 

saccade were processed from the eye video using scripts 
developed in MATLAB. Extracted data were superimposed 
on the eye video and played back to manually ensure that 
all features extracted correctly represented actual eye 
activities. 

Blinks were identified as samples for which the pupil 
diameter was blocked by nearly half, until fully closed and 
reopened to above half-open. Pupil diameter during 
blinking was linearly interpolated between 2 frames before 
blink and 2 frames after blink. Under normal conditions, 
blink duration is around 100 - 150 ms and the 2 frames (133 
ms) before and after each blink are long enough to estimate 
the pupil size occluded by blinking. Pupil size was 
measured in pixels and was filtered by a low pass filter to 
remove drift, tremors and other noise introduced in the 
measure. Fixation was defined as the eye position within 1 
degree of the visual angle for at least 200 ms. Saccades and 
fixations were separated automatically using dispersion-
based algorithms.  

RESULTS 

Subjective Rating 

As expected, subjective ratings using a 9-point rating scale 
showed recalling 3 player positions (M=1.67, SD=0.52) is 
easier than recalling 6 player positions (M=3.33, SD=1.03). 
A paired two-tailed t-test conducted on these data showed a 
significant main effect (t(5)=3.95, p=0.01). 

Eye Activity Measure 

Eight dependent variables were employed to measure the 
mental effort: blink latency, blink rate, average pupil size in 
the time between 2s preceding and after the game video 
ended, standard deviation of pupil size in the 4-second 
period, fixation time, fixation rate, saccade size and saccade 
speed. Their trends are shown in Figure 1. 

Overall-task Calibration and First-task Calibration  

Due to the different feature value ranges for each 
participant, we experimented with overall-task calibration 
and first-task calibration method to minimize the between-
subject variability in different mental effort scales. That is, 
we use the maximum and minimum parameter value 
(Vmax,Vmin) from all sub-tasks or estimate them from the 
first sub-task (increase/decrease by 50%) for each subject, 
then apply a normalization to the average feature value of 6 
sub-tasks. The formula used is:  

minmax

min

VV

VV
V raw

cal



 . 

The effect of the overall-task calibration on the analysis is 
shown in the rightmost two columns of Table 1. The first-
task calibration method gives similar levels of significance 
except for blink rate, which is significant only at 90% 
confidence. 
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Figure 1. Raw feature value vs. subject ID for low (blue) and medium (red) mental effort levels. Bars display the feature value 

mean and range. 

Table 1. Calibration. Paired t test analysis for the eight 

parameters,  before and after (*) overall-task calibration.  

Paired    t-test t(5) Pvalue  t(5)* Pvalue
*
 

Blink latency 1.9450 0.1094 6.8591 0.0010 

Blink rate 3.6409 0.0149 4.9380 0.0043 

Mean Pupil size 4.2283 0.0083 5.2053 0.0035 

Std pupil size 0.6282 0.5575 0.2185 0.8357 

Fixation time 2.4114 0..0608 3.0688 0.0278 

Fixation rate 2.9531 0.0318 3.4011 0.0192 

Saccade size 4.6870 0.0054 6.7197 0.0011 

Saccade speed 3.5623 0.0162 4.3702 0.0072 

Correlation Coefficient between All Pairs of Features 

As expected, parameters in same class of features are highly 
correlated except mean and standard deviation of pupil size. 
Blink, pupil size and eye movement features are 
uncorrelated with each other, as shown in Table 2. 

DISCUSSION 

In regards to blink activity, both blink latency and blink rate 
display clear mental effort related variations. Pupil size was 
measured from 2 seconds before and 2 seconds after the 
clip, involving mostly recall in this period, during which 
sustained working memory is heavily involved. The 
average pupil size for the two difficulty levels shows a 
significant effect as opposed to the standard deviation of 
pupil size, which indicates that in some cases pupil size is 
larger in a more difficult task level but shows less 
fluctuation. Meanwhile, fixation duration and fixation rate 
results indicate that significantly more attention was needed 
when the task was more complex. In addition, saccade 
speed and especially saccade size appear to have been 
highly discriminatory parameters. 

These patterns of eye activity offers further insight into 
human mental effort. As more working memory and 

attentional resources are required in order to achieve high 
task performance, participants increased their blink latency, 
pupil size and fixation duration, and at the same time 
decreased their blink rate, fixation rate, saccade speed and 
saccade size. These patterns agree with previous literature, 
which suggest that blink and pupillary response can be an 
indicator of workload [1,2,5,6,7]. Interestingly, in this 
visual task study, eye movement appears to be a very 
suitable index of mental effort as well. However, these 
results contrast with those presented in two other studies 
[5,6] where fixation time, saccade size and saccade speed 
appeared to have no systematic changes with increasing 
workload in a visuospatial mock warfare task. The reason 
could be due to the nature of their task, depending on the 
degree of eye movement required to complete the task. 

Table 2. Average correlation coefficients (Low in blue and 

medium in red; B1:blink latency; B2:blink rate; P1:mean 

pupil size; P2:standard deviation of pupil size; F1:fixation 

time; F2:fixation rate; S1:saccade size; S2:saccade speed). 

L/M B1 B2 P1 P2 F1 F2 S1 S2 

B1  -0.86 
-0.91 

-0.20 
-0.49 

0.33 
0.01 

-0.02 
-0.04 

-0.02 
0.12 

-0.14 
-0.39 

0.10 
-0.12 

B2 
  0.34 

0.38 
-0.37 
-0.02 

-0.00 
0.06 

0.10 
-0.13 

0.22 
0.48 

-0.08 
0.08 

P1    -0.22 
0.28 

-0.19 
-0.20 

0.18 
0.15 

-0.00 
0.44 

0.07 
0.47 

P2     0.04 
-0.28 

-0.09 
0.24 

-0.04 
0.14 

0.17 
0.12 

F1      -0.96 
-0.97 

-0.12 
-0.29 

-0.32 
-0.33 

F2       0.15 
0.23 

0.33 
0.36 

S1        0.60 
0.47 

In this study, the higher load task of recalling 6 player 
positions requires an increased allocation of working 
memory resources, as well as identifying an increased 
number of defenders or attackers and making more 
selections and decisions while maintaining attention. This is 
highly demanding, as the basketball players are constantly 
moving in the game video. Some other tasks adopted 
previously for inducing different levels of mental effort, for 
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instance, mental arithmetic and digit span tasks, depend on 
working memory heavily, while vigilance tasks need less 
working memory involvement [7]. It is hypothesized that a 
combination of eye blink, task-invoked pupillary response 
and eye movement each differently reflect the cognitive 
activities, since they are controlled by different nervous 
systems, i.e. the central or peripheral nervous system, and 
they may provide complementary information about mental 
effort. This is supported by the correlation analysis between 
the various pairs of features.  

In this study, we proposed first-task calibration method, 
which compares well with calibration over the entire task. 
Although the aim of calibration is to reduce individual 
differences, it might also be used to find reference patterns 
that can distinguish the components of physical aspects of 
the task from the indicators of mental effort, e.g. remove 
the minimum value associated with basic eye function 
required from the feature values. Future work will evaluate 
the proposed methods on a much wider range of subjects. 

IMPLICATIONS FOR INTERFACE DESIGN 

Mental effort or cognitive load indices based on eye-
activity form part of an area of active current interest in 
HCI. One proposed method employs eye movement to 
characterize system features during evaluation in order to 
assess interface quality [8]. There are also reports indicating 
that mental effort reflects user satisfaction and engagement 
[9]. One implication from this study is that eye activity can 
be employed as a potential tool to measure human mental 
effort in realistic human computer interaction scenarios. 
Multiple eye activity based features might be used more 
generally to provide improved load level discrimination. In 
HCI, intelligent interfaces will not only need to know where 
the attention of users is directed, but also how much of the 
user’s working memory the interface/interaction/task is 
occupying. To evaluate an interface design, measuring the 
user’s mental effort in real time via eye activity may be 
more objective, convenient and detailed, and less obtrusive 
method than self-report or dual task methodologies. 

CONCLUSION 

Different eye activity features spanning blink, task-invoked 
pupillary response and eye movement have been shown to 
each provide significant discriminative power between two 
levels of induced mental effort in a computer based training 
task typical of a semi-realistic training interface. 
Combination of these features has a distinct advantage as an 
objective measure of human mental effort, as different 
inhibitory mechanisms require mental effort for eye 
functions that, when combined, provide rich and possibly 
complementary information about mental effort. This is 
supported by the results of the correlation analysis between 
the various pairs of features. In turn, we may able to 
improve our understanding of human mental effort in real 
time, which may prove significant in the design and 
evaluation of usable, intelligent adaptive interfaces. Eye 

activity in HCI research has been mainly focused on eye 
movement as an input in human computer dialogue and for 
usability measurement, and both show promise but have yet 
to become widely used [10]. Although understanding of the 
effect of cognitive load on eye activity is growing, 
measurement systems have yet to be prototyped. Future 
work will focus on prototypes that benefit the interaction 
between users and computer systems. 
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Abstract. Pupillary response has been widely accepted as a physiological index 
of cognitive workload. It can be reliably measured with remote eye trackers in a 
non-intrusive way. However, pupillometric measurement might fail to assess 
cognitive workload due to the variation of luminance conditions. To overcome 
this problem, we study the characteristics of pupillary responses at different 
stages of cognitive process when performing arithmetic tasks, and propose a 
fine-grained approach for cognitive workload measurement. Experimental 
results show that cognitive workload could be effectively measured even under 
luminance changes. 

Keywords: Cognitive workload, eye tracker, luminance, pupillary response. 

1  Introduction 

Cognitive workload measurement plays an important role in various application areas 
involving human-computer interface, such as air traffic control, in-car safety and 
gaming [2]. By quantifying the mental efforts of a person when performing tasks, 
cognitive workload measurement helps predict or enhance the performance of the 
operator and system. Physiological measures are one class of workload measurement 
techniques, which attempts to interpret the cognitive processes through their effect on 
the operator’s body state [5]. In the past, physiological measures usually entailed 
invasive equipment. With the advance of sensing technologies in recent years, the 
measuring techniques have become less intrusive, especially those through remote 
sensing. As a physiological index, eye activity has been considered as an effective 
indicator of cognitive workload assessment, as it is sensitive to changes of mental 
efforts. Eye activity based physiological measures [1] [3] [4], such as fixation and 
saccade, eye blink, and pupillary response, can be detected unobtrusively through 
remote sensing. 

The fact that changes of pupillary response occur during mental activity has long 
been known in neurophysiology, and it has been utilized to investigate cognitive 
workload. In an early work, Beatty investigates the pupillary response through 
experiments that involve tasks of short-term memory, language processing, reasoning 

                                                           
1 NICTA is funded by the Australian Government as represented by the Department of 

Broadband, Communications and the Digital Economy and the Australian Research Council. 
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and perception [1]. Pupillary response is shown to serve as a reliable physiological 
measure of mental state in those tasks. Usually head-mounted eye trackers are used to 
measure pupillary response during the task. It is not until recently that remote eye 
tracking has become a popular approach for cognitive workload measurement [6] [9]. 
In comparison with the head-mounted eye trackers, remote eye tracker enables the 
non-intrusive measurement of cognitive workload without interfering with user’s 
activity during the tasks. Moreover, remote video eye tracker is shown to be precise 
enough for measuring the pupillary response. 

Though empirical evidence from the literature has demonstrated that eye activity 
based physiological measure is a useful indicator of mental efforts, it could be 
influenced by noise factors unrelated to the cognitive task. For example, it is reported 
that pupillary response is sensitive to illumination condition, fatigue, and emotional 
state [7] [8] [12]. These factors restrict the practical usage of pupillary response for 
cognitive workload measurement. In this paper we investigate the feasibility of 
measuring cognitive workload based on pupillary response even under luminance 
changes. 

2  Related Work 

As a non-intrusive means of measuring cognitive workload, remote eye tracker has 
been demonstrated to be precise enough for recording detailed information of 
pupillary response. Klingner et al. examine the pupil-measuring capability of video 
eye tracking in [6]. In their experiment, cognitive workload is measured using a 
remote video eye tracker during tasks of mental multiplication, short-term memory, 
and aural vigilance. It has been observed that the remote eye tracker can detect subtle 
changes in pupil size induced by cognitive workload variation. Similarly, Palinko et 

al. also use remote eye tracking to measure cognitive workload in their experiment 
[9]. In a simulated driving environment, pairs of subjects are involved in spoken 
dialogues and driving tasks. The driver’s cognitive workload is estimated based on the 
pupillometric measurement acquired from the remote eye tracker. The pupillometric 
measurement and the driving performance exhibit significant correlation, which 
suggests the effectiveness of cognitive load measurement by remote eye tracker. 

Although the physiological measure based on remote eye tracker has exhibited its 
usage for cognitive workload measurement, its performance could be affected by 
various noise factors. Luminance condition is especially known as an important factor 
that influences the pupil size. Pomplun and Sunkara compare the effects of cognitive 
workload and display brightness on pupil dilation and investigate the interaction of 
both factors in [10]. They design a gaze-controlled human computer interaction task 
that involves three levels of task difficulty. In the experiments, each level of the 
difficulty is combined with two levels of background brightness (black and white), 
which results in six different trial types. The experiment results show that the pupil 
size is significantly influenced by both the task difficulty and the background 
brightness. There is a significant increase of pupil size when the workload demand 
becomes higher under both background conditions. However, the pupil size 
corresponds to the highest workload under white background is even smaller than that 



corresponds to the lowest workload under black background. 

3  Experiment 

3.1  Participants and apparatus 

Thirteen 24-to-46-year-old male subjects have been invited to participate in the 
experiment. All the subjects have normal or corrected-to-normal vision. Each subject 
receives a small-value reward for his participation. 
 

 

Figure. 1. Experiment setup. 

The pupillary response data of each subject is recorded with a remote eye tracker 
(faceLAB 4.5 of Seeing Machines Ltd), which operates at a sampling rate of 50 Hz 
and continuously measures the subject’ pupil diameters. The skin conductance data is 
also recorded with a galvanic skin response (GSR) sensor (ProComp Infiniti of 
Thought Technology Ltd). However the analysis of the GSR data is out of the scope 
of this paper. Visual stimuli are presented on a 21-inch Dell monitor with a screen 
resolution of 1024 by 768 pixels. The experiment setup is demonstrated in Figure 1. 

3.2  Experiment design 

Each subject is requested to perform arithmetic tasks under different luminance 
conditions. The arithmetic tasks have 4 levels of difficulty, and each level of task 
difficulty is combined with 4 levels of background brightness, which results in 16 
different trial types in total. 

For each arithmetic task, each subject is asked to sum up 4 different numbers 
sequentially displayed on the center of the screen, and then choose the correct answer 
on the screen through mouse input. The task difficulty depends on the range of 
numbers. For the first (lowest) difficulty level, each number is binary (0 or 1); for the 
second difficulty level, each number has 1 digit (1 to 9); for the third difficulty level, 
each number has 2 digits (10 to 99); for the fourth (highest) difficulty level, each 
number has 3 digits (100 to 999). Each number will be displayed for 3 seconds, and 
there is no time constraint for choosing the answer. Before the first number appears, 



different number of “X” will be displayed at the center of the screen for 3 seconds. 
The number of “X” corresponds to the number of digits for each arithmetic task. 

During the experiment, the luminance condition varies when each subject performs 
arithmetic tasks. To produce different levels of luminance condition, luminance 
(grayscale value) of the background are set as 32, 96, 160 and 224 for the four levels 
of background brightness (L1, L2, L3, and L4), respectively. Black background will 
be displayed for 6 seconds before each arithmetic task. The time setting for each 
arithmetic task is depicted in Figure 2. 
 

 

Figure 2. Time setting of an arithmetic task. 

The experiment starts with a practice trial of which the data is not analyzed. 
Subsequently a one-minute resting data with black background is recorded before the 
test trials start. There are two tasks for each trial type, which results in 32 arithmetic 
tasks for each subject in the experiment. The tasks are presented randomly during the 
experiment. Once the subject finishes all the tasks, another one-minute resting data is 
also recorded. The whole experiment lasts about 25 minutes for each subject. 

4  Analysis 

In this section we analyze the correlation of the pupillary response and cognitive 
workload under different luminance conditions from the experimental data. 
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Figure 3. Subjective rating of task difficulty. 

 



Figure 3 shows average subjective rating scores for the four levels of task difficulty 
from all the subjects. The scores range from 1 to 9, which correspond to the easiest 
and hardest tasks respectively. It can be known that there are significant differences 
between the subjective ratings of different task difficulty levels (F=108.63, p<0.05 in 
ANOVA test), which indicates the overall effectiveness of cognitive workload 
manipulation in the experiment. 

4.1  Coarse-grained Analysis 

For each subject, the pupillary response data of every arithmetic task during the 
experiment is examined. As a coarse-grained analysis, the average pupil diameter 
from the whole task period is used to characterize the cognitive workload. Figure 4 
shows the average pupil diameters from that period under different levels of task 
difficulty and background brightness. It can be seen from the figure that the pupil 
diameter is influenced by the background brightness, in the sense that a smaller pupil 
diameter is usually observed under brighter background. On the other hand, the pupil 
diameter is also influenced by cognitive workload. For each background brightness 
level, the pupil diameter often increases when the task difficulty level becomes high. 
Together background brightness and cognitive workload could affect the pupil 
diameter. It can be observed that the pupil diameter at the highest task difficulty with 
highest background brightness is, in fact, smaller than that at the lowest task difficulty 
with lowest background brightness. This observation is consistent with previous 
empirical study that, luminance conditions take priority over cognitive demands in 
pupil diameter changes. Thus it is difficult to directly use the average pupil size or 
dilation to measure cognitive workload in the experiment. 

 
Figure 4. Pupil diameter under different task difficulty levels and background brightness 
conditions. 

The above analysis shows that the coarse-grained measures of pupillary response 
could not effectively measure cognitive workload under luminance changes. To 
overcome this problem, we propose a fine-grained analysis of pupillary response in 



the following section. It is expected that the dynamic characteristics of cognitive 
process could be reflected by the fine-grained measures of pupillary response, which 
will improve cognitive workload measurement under complex environments. 

4.2  Fine-grained Analysis 

For a fine-grained analysis of pupillary response, the 12-second task period is divided 
into smaller-size intervals. As shown in Figure 5, we examine five 3-second intervals 
corresponding to different stages of the cognitive process when performing the task. 
We denote X as the interval for the “X” displaying interval, and N1, N2, N3 and N4 
as the four 3-second number displaying intervals respectively. Additionally, we also 
examine two 6-second intervals based on N1, N2, N3 and N4. Let M1 be the first 6-
second of number displaying interval, and M2 the second 6-second interval. The 
setting of task intervals can be found in Figure 5. On the basis of these interval 
definitions, there are 6 intervals for each arithmetic task. We measure the average 
pupil diameters from these 6 intervals. 
 

 

Figure 5. The setting of task intervals for fine-grained analysis. 

For each task, average pupil diameter is measured for all the intervals. To reduce 
the influence of luminance condition, we normalize the measurement values for 
interval N1, N2, N3, N4, M1, and M2 using average pupil diameter Xd  from the X 

interval, as there is no cognitive workload involved in that interval. Let Nd  be one 

pupil size measurement from one task interval, its normalized measurement value is 

defined as 
X

XN
n
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dd
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Figure 6 demonstrates the distributions of measurement values from M1 and M2 
under different task difficulty levels. The figure demonstrates the characteristics of 
pupillary response at different time intervals. Even under the influence of luminance 
changes, the measurement values increase as the task difficulty increases. Such trend 
is more significant in the measurement values from M2 (F=3.93, p<0.05 in ANOVA 
test). We further examine interval M2 by studying the measurement values from N3 
and N4, which are shown in Figure 7. As shown in Figure 7, the trend of the increase 



in the measurement values with increasing task difficulty is more significant in N4 
(F=3.43, p<0.05). 
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Figure 6. Box plots of measurement values (sample minimum, lower quartile, median, upper 
quartile, and maximum) under different task difficulty levels: (left) M1, (right) M2. 
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Figure 7. Box plots of measurement values (sample minimum, lower quartile, median, upper 
quartile, and maximum) under different task difficulty levels: (left) N3, (right) N4. 

In addition to the above analysis, cognitive workload classification has also been 
investigated using measurements from different intervals. We employ a decision tree-
based classification scheme [11] to classify the cognitive workload. Specifically, 
given the measurement values from different classes, a threshold is estimated such 
that maximum information gain can be achieved by splitting the data using that 
threshold. One threshold is needed for two-class classification while three thresholds 
are required for the four-class classification. We conduct both two-class classification 
(task difficulty 1, 2 vs. task difficulty 3, 4) and four-class classification of cognitive 
workload. The classification results are shown in Table 1. As shown in Table 1, M2 
outperforms M1 for both two-class and four-class classification. N4 achieves the 
highest performance in both tasks. The measurements from different intervals reveal 
the dynamic characteristics of pupillary response at different stages of cognitive 
process, which can be utilized to improve the performance of cognitive workload 
assessment under complex environments. 



Table 1. The classification results of different pupillary response measurements. 

Pupillary Measurements M1 M2 N3 N4 
Two-class Classification 59.3% 71.6% 68.9% 72.7% 
Four-class Classification 36.6% 41.7% 43.0% 43.9% 

6  Conclusion 

This work investigates the measurement of cognitive workload through remote eye 
tracking under the influence of luminance condition. We study the characteristics of 
pupillary response, by analyzing the measurements acquired from different stages of 
cognitive process. The experimental results demonstrate the feasibility of cognitive 
workload measurement under complex environments using the proposed fine-grained 
analysis. Our future work will be applying machine learning techniques to improve 
fine-grained analysis for cognitive workload measurement. 
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Abstract 

Pupillary response has been widely accepted as a 

physiological index of cognitive workload. It can be 

reliably measured with video-based eye trackers in a 

non-intrusive way. However, in practice commonly 

used measures such as pupil size or dilation might fail 

to evaluate cognitive workload due to various factors 

unrelated to workload, including luminance condition 

and emotional arousal. In this work, we investigate 

machine learning based feature extraction techniques 

that can both robustly index cognitive workload and 

adaptively handle changes of pupillary response caused 

by confounding factors unrelated to workload. 
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Appendix E



  

Introduction 

Cognitive workload evaluation is an important issue in 

various research and application areas related to 

human-computer interaction such as adaptive 

automation and training, air traffic control, performance 

prediction, and driver safety [3]. With the advance of 

modern sensing technologies, more and more 

physiological measures have been developed for the 

assessment of cognitive workload. Among these 

techniques, video camera or imaging sensor based 

workload measures, especially those through remote 

sensing, have attracted increasing attention since they 

can provide physiological index of cognitive state in a 

non-intrusive way. 

One valuable type of physiological measure involves 

workload effects on activities of human eye. The 

correlation between pupillary response and changes in 

mental workload has been studied for decades. In an 

early study [1], Beatty investigated task-evoked 

pupillary response in experiments containing various 

tasks such as language processing, reasoning, and 

perception. Pupil dilation was demonstrated to be a 

reliable physiological measure of mental state or 

processing load during the tasks. More recently, pupil 

measurement through video-based eye tracking has 

become a popular approach for cognitive workload 

evaluation due to its sensitivity and convenience [4,9]. 

The video information is acquired in a non-intrusive 

(particularly with remote systems) and continuous way 

without interfering with the user’s activity during the 

tasks. Moreover, the video sequences of eye tracking 

data can be captured with high frame rates (more than 

30 frames per second) and processed in real-time. 

Although empirical evidence from a number of studies 

has shown that eye-activity based physiological 

measures can be used as an effective indicator for 

increases in mental workload, the measures may fail to 

evaluate workload under complex environments, due to 

confounding (or noisy) factors unrelated to the 

cognitive task. Pupil dilation is known to be affected by 

both the illumination condition of the visual field and 

the emotional status of the subject [7,10]. For 

example, [5] reported the failure of workload measures 

due to changes in ambient illumination or screen 

luminance, which might give rise to greater variation of 

pupil size. Such factors restrict the usage of pupillary 

response as a workload index in practice. With machine 

learning based feature extraction techniques [11], in 

this work we investigate the feasibility of robustly 

measuring cognitive workload (with predefined 

workload levels) through remote eye tracking even 

under changes of luminance condition and emotional 

arousal. 

Related Work 

Recent cognitive studies have demonstrated the 

reliability of physiological measures obtained through 

remote eye tracking when the luminance condition is 

well-controlled. Klingner et al. examined the pupil 

measuring capability of video-based eye tracker for 

cognitive workload evaluation [4]. In the experiments, 

several arithmetic and memory tasks were performed 

by the subjects. Subtle changes in the task-evoked 

pupillary response were detected using a remote eye 

tracker. It was found that compared to previous 

obtrusive pupil measuring devices, the remote eye 

tracker could effectively measure the cognitive 

workload. In another experiment using dual task 

methodology, Palinko et al. also studied the pupillary 
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response with a remote eye tracker [9]. The subjects 

performed both simulated vehicle driving and spoken 

dialogues. Pupil size data acquired from the remote eye 

tracker was used to evaluate the driver’s cognitive 

workload. During the task, the physiological measure 

based on pupillary response exhibited significant 

correlation to those performance measures of driving. 

Pupillary response is also influenced by luminance 

variations during experimental tasks. Pomplun and 

Sunkara investigated the effects of both cognitive 

workload and display brightness on pupil dilation in the 

experiment of a gaze-controlled human-computer 

interaction task [8]. In the visual task, three levels of 

task difficulty were combined with two levels of 

background brightness (black and white). The 

experimental results showed that under both black and 

white background conditions, the pupil area exhibited 

significant increase when workload demands became 

higher. However, under bright background even the 

pupil area corresponding to high level of task difficulty 

was significantly smaller than the pupil area 

corresponding to low level of difficulty under black 

background. In comparison with the task difficulty, the 

background brightness actually resulted in greater 

variation of the pupil area. 

On the other hand, previous studies suggest that 

emotional arousal is another key factor affecting the 

pupillary response. Stanners et al. investigated 

pupillary response in tasks that involved both emotional 

and cognitive factors [10]. It was exhibited that 

cognitive demands took priority over emotional factors 

in modulating the pupillary response. With controlled 

luminance condition, Bradley et al. investigated the 

effects of emotional arousal on pupillary response 

during picture viewing [2], using a set of pictures 

selected from the International Affective Picture System 

(IAPS) [6]. It was found that pupillary changes became 

larger when viewing pleasant and unpleasant images. 

Experiment 

So far twelve 24-to-35-year-old male participants (20-

30 participants in total are expected) have been invited 

to perform arithmetic tasks under changes of luminance 

condition and emotional arousal simultaneously. The 

whole experiment consists of three parts and lasts 

about 15 minutes. In the first part, the subject is asked 

to sum up numbers with blank background (black 

screen). In the second and third parts, the subject is 

asked to sum up numbers with pleasant and unpleasant 

background images shown on the screen. Different task 

difficulty levels and background conditions are 

employed to manipulate the cognitive workload, as well 

as background luminance and emotional arousal during 

the experiment. 

For each arithmetic task, the subject is asked to sum 

up 4 different numbers sequentially shown at the 

center of the screen, and then choose the correct 

answer on the screen through mouse input. There are 4 

levels of task difficulty depending on the range of 

numbers. For the first (lowest) difficulty level, each 

number is binary (0 or 1); for the second difficulty 

level, each number is 1-digit (1 to 9); for the third 

difficulty level, each number is 2-digit (10 to 99); for 

the fourth (highest) difficulty level, each number is 3-

digit (100 to 999). Each number will be displayed for 3 

seconds, and there is no time constraint for choosing 

the answer. Before the first number appears, an “X” will 

be displayed at the center of the screen for 3 seconds.  
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To vary both the luminance condition and emotional 

arousal, pleasant and unpleasant background images 

are shown on the screen when the subject performs 

arithmetic tasks in the second and third parts of the 

experiment. A background image will be displayed for 6 

seconds before each arithmetic task. Subsequently, the 

subject will perform the arithmetic task with the 

background image remaining on the screen. Eight 

pleasant images (mean valence/arousal = 7.1, 5.7) and 

eight unpleasant images (mean valence/arousal = 2.8, 

4.8) are selected from the IAPS database. The mean 

luminance (Y value) of the images ranges from 53 to 

174. 

One minute resting data with black screen is recorded 

at the beginning and the end of the whole experiment 

for each subject. There are 8 arithmetic tasks randomly 

given in each experiment part (2 for each difficulty 

level). During the experiment, pupillary response of 

each subject is recorded with a remote eye tracker 

(faceLAB 4.5 of Seeing Machines Ltd). Skin 

conductance is also recorded with a GSR sensor 

(ProComp Infiniti of Thought Technology Ltd). 

Preliminary Analysis 

Figure 2 shows the average pupil diameter under 

different task difficulty levels and background 

conditions (ignoring pupillary response during eye 

blinks). It can be seen that for the arithmetic tasks with 

the black background, the pupil diameter increases 

when the task difficulty level becomes high (F>11, 

p<0.01 in ANOVA test for pupil diameter). However, 

such relationship can no longer be observed for the 

tasks with background images. Both the luminance 

change of the screen and the emotional arousal when 

viewing the pictures appear to influence the pupillary 

response. Specifically, the pupil size recorded at the 

highest task difficulty level with background images is, 

in fact, smaller than the pupil size recorded at the 

lowest task difficulty level with black background. The 

phenomenon is consistent with previous empirical 

research showing that luminance conditions take 

priority over cognitive demands and emotional arousal 

in pupil size changes. Considering the influence of noisy 

factors unrelated to cognitive workload, pupil size or 

dilation may not effectively index cognitive workload 

under complicated situations. 
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Figure 2. Pupil diameter under different task difficulty levels 

and background conditions 

In this work, we investigate the feasibility of robustly 

measuring cognitive workload even under the effects of 

noisy factors including luminance changes and 

emotional arousal. The problem could be solved if the 

physiological features (measures) extracted from the 

pupillary response data could both characterize 

cognitive workload and adapt to changes caused by the 

confounding factors. To test its feasibility, a simple 

difference feature (the difference of the average pupil 

Figure 1. Experiment setup 

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1630



  

diameter between the first half and second half interval 

of the task) is employed to characterize the cognitive 

workload changes. The distribution of normalized 

feature values for different difficulty levels from all the 

pupillary response data is depicted in Figure 3. Even 

with changes of background luminance and emotional 

arousal, the feature value increases as the task 

difficulty level increases (F>8, p<0.01 in ANOVA test 

for the feature). 

 

Figure 3. Box plot of feature values (sample minimum, lower 

quartile, median, upper quartile, and maximum) corresponding 

to different task difficulty levels 

Using a decision tree-based classification scheme, 

about 49% overall accuracy of 4-class difficulty level 

estimation is achieved based on the difference feature. 

Meanwhile, with the same classification scheme only 

28% accuracy is achieved by using the pupil dilation 

measure. The improvement shows the potential of 

robust workload measurement under the influence of 

confounding factors using pupillary response based 

feature. It should be noted that such feature is 

heuristically derived from manual inspection of the data 

itself, and the performance of workload evaluation 

could be boosted with machine learning based feature 

extraction techniques. 

Ongoing Work  

Our current work focuses on developing machine 

learning algorithms that can automatically find optimal 

features for robust workload measurement under noisy 

factors. There are quite a few systematic ways for 

solving this optimization problem, and Boosting is one 

popular algorithm that is suitable in this instance [11]. 

Boosting is a type of learning algorithm, which creates 

a classifier that can predict the labels of unseen data 

based on the given examples and their labels. In its 

original form, the Boosting algorithm is used to form a 

strong classifier from a set of weak classifiers. A strong 

classifier is defined as a classifier that correlates 

arbitrarily well with the true classification, whereas a 

weak classifier only correlates slightly with the true 

classification. However it can also be used as a feature 

selection scheme if we relate each weak classifier to a 

single feature. For example, we can define a weak 

classifier )(xh j  that consists of a feature jf , a 

threshold jθ , and the parity 1±=jp , which indicates 

the following simple classification rule: if 

jjjj pxfp θ≤)(  then 1)( =xh j , otherwise 0)( =xh j . 

The Boosting algorithm then creates a strong classifier 

∑=

j

jj xhxH )()( α  by selecting )(xh j  iteratively from a 

pool of weak classifiers, and each )(xh j  is weighted by 

jα , which relates )(xh j ’s classification accuracy on the 

examples. Additionally, the examples are reweighted so 

that future weak classifiers can focus on the examples 
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misclassified by the previous classifiers. In this work, 

each extracted feature can be viewed as a weak 

classifier consisting of a time interval vector jT , a 

threshold and also a parity value. Currently jT  is set 

heuristically using the first and second half of each 

task. To improve accuracy of cognitive workload 

indexing, the optimal set of weak classifiers (features) 

can be obtained through the Boosting algorithm. 

Furthermore, the recorded GSR data will also be 

analyzed in a similar way to complement the pupillary 

response analysis. 

Summary 

This work studies cognitive workload evaluation 

through remote eye tracking under the influence of 

confounding factors such as luminance condition and 

emotional arousal. We are employing Boosting based 

feature extraction to both robustly measure workload 

and adaptively handle changes of pupillary response 

caused by confounding factors. The proposed technique 

can be used in various applications involving cognitive 

workload evaluation under complex environments. 
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